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LETTER TO THE EDITOR 

On the quantum and semi-classical theories of a two-level 
atom interacting with a single-field mode 

S Swain 
Department of Applied Mathematics and Theoretical Physicb, 
The Queen’s University of Belfast, Belfast BT7 I N N ,  UK 

Received 12 October I973 

Abstract. Formally exact solutions to the quantuin and semi-classical models of a 
single atom interacting with a single-field mode in the dipole approximation are 
compared. It is shown that the quantum results tend to the semi-classical ones 
in the limit rl -+ CO, in disagreement with the results of Chang and Stehle. 

111 a recent publication, Chang and Stehle (1971) have performed a fully QED calculation 
on a system consisting of a single two-level atom interacting with a single monochro- 
niatic field mode in the dipole approximation and have compared their results with 
those obtained in the semi-classical approximation. They are led to the conclusion 
that whilst the QED and semi-classical theories agree at low intensities of the electro- 
magnetic field, considerable differences occur at high intensities. (One particular 
property singled out for discussion was the Bloch-Siegert shift.) This could be an 
extremely important result, for it has long been assumed that the semi-classical and 
quantum theories should converge when the mean number of photons (in the quantum 
case) is very large-precisely the opposite situation to that found by Chang and Stehle. 

The findings of Chang and Stehle have been challenged recently by several 
authors (Stenholm 1973a, b, Pegg 1973, Hannaford et al 1973, Cohen-Tannoudji et al 
1973), who have all made fully quantum-mechanical calculations of the Bloch- 
Siegert shift (by different methods to those used by Chang and Stehle) and found 
results which differ from the latters’ and which agree with the semi-classical results 
in the large photon number limit. However, the calculations of all these authors 
involve approximations at some stage, so that the problem cannot be considered 
completely resolved, and furthermore that rebuttals of the work of Chang and Stehle 
all involve calculations of the Bloch-Siegert shift only, and it is clearly desirable to 
investigate more generally the conditions under which the quantum and semi-classical 
theories could be expected to give essentially the same results. 

We have previously published formally exact solutions to the problem of a single 
atom interacting with a single-field mode in the quantum case (Swain 1973a, b, to 
he referred to as I) and in the semi-classical case (Swain 1973c, to be referred to as 11). 
In this letter we compare these exact solutions and show how the semi-classical theory 
results from the quantum theory when the number of photons involved in the quantum 
case is very large. The results are presented in a manner which makes the correspond- 
ence between the semi-classical and quantum theories most transparent. 

We wish to  solve the time-dependent Schrodinger equation 
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for the situations in which H describes the interaction between a single atom and a 
single mode in the dipole approximation for (a) the semi-classical case, and (6) the fully 
quantized case. For the semi-classical case we use the Schrodinger picture, so that 

(2) 
whereas for the fully quantized case it is more convenient to use a partial interaction 
picture to eliminate the free-field contribution to the hamiltonian. That is, we take 

H,, = E, ( a  ) ( a  I + E, (8 ) (8 ( + ( T/e-Iwt + V* eiW1)( / a  ) (B  1 + IB ) ( a  I) 

I$,) = exp[ - i ( a t a + + ) ~ r ] l + ~ )  

Hq = Eala) (a1 +E,I/?) (PI +(gae-l'~t+g*atelOt)(la) (P I  + IP> (.*I). 

(3)  

(4) 
The hamiltonians (3) and (4) are now clearly related, and we would expect some 
correspondence between and I+,). (In equations (2)-(4), E, and E, are the 
energy levels corresponding to the isolated atom's eigenstates l a )  and IF) respectively, 
V is a constant defining the amplitude of the monochromatic classical field whose 
frequency is w ,  a and at are the usual annihilation and creation operators for the 
quantized field, and g is a numerical coupling constant.) 

We have shown elsewhere (I and 11) that exact solutions of (1) with H given by 
(2) and (4) are, respectively, of the form 

where I + , l >  satisfies an equation similar to (1 )  but with H now given by 

W 

lhc ( t )>  = / qy ,# ) )  = exp(-iq,,,r) 2 [a,(r,j)l,>+b,(r,j)lPile'mot ( 5 )  

I+,(f) ) = I&c(f) ) = exp( - i~y,,O c [D,,,,(Y, k )  la > + D,,,(Y, k )  IB >I  112 ) elnwt (6) 

m =  - m 

W 
and 

n = O  

( y  

where the q, a and b are constants defined explicitly in 11, and the d, and D in 1. 
(Actually in I we work in the Schrodinger picture and so find I # g ( t ) ) . l + , ( t ) )  is obtained 
from it by application of (3)). 

The wavefunctions ( 5 )  and (6) are of a similar form apart from the fact that the 
lower limits on the sums over il and m differ, and that the photon number eigenvector, 
n, appears in (6) .  The latter difference can be removed using a device due to Shirley 
(1965). He has shown that the time-dependent Schrodinger equation (1) with H given 
by (2) is completely equivalent to the time-independent Schr6dinger equation 

a ,  8; j and k are integers) 

HFldo)) = q1d0) ) (7) 

where HF is the Floquet hamiltonian defined by equation (10) of Shirley's paper. 
However we find it more convenient to write out HF as 

HF = Eala)(al+E~lP)(PI+ 2 Im)nzu(mI 
m 

m = - a  
W 

+ c ( Ylm ) ( m  + 1 I + V*lm + 1 ) (mI)(la ) (81 + IP) (4)  (8) 

where we have introduced, following Shirley, a set of states somewhat similar t o  the 
photon number eigenstates but capable of taking negative integer as well as positive 
integer values. These states merely denote Fourier components, but it is interesting 

m = - m  
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to  observe how states analogous to the photon occupation states occur naturally even 
i n  the semi-classical theory. It is also worthwhile pointing out that the quantum 
hamiltonian may be written in the Schrodinger picture as 

m 

H = ~ a I " ) < . I + ~ g I P > ( B I +  c In>nw<nl 
n=O 

m 

+ 2 (n+ 1)"2(gln> (n+ 1 I +g*b+ 1 ) <nl)(la> (PI + IP> (.I). (9) 
n=O 

The formal similarity of (8) and (9) is obvious. 
A solution of (7) with (8) is 

where the a, and bm are the same quantities which appear in (5) .  (We note that a 
solution of (7) with HF given by (9) is exactly equation (6) with the exp[i(-d+uw)t] 
factor omitted.) Hence if we introduce the Fourier component representation we 
should write (5) as 

m 

Iqy,j(f)> -- exp(-iq,,jr) 2 [am(r,.i)i.>+bm(y,j)IB>Iim> exp(imwt) (1 1) 
m -  - oj 

(6) and (11) differ in form only in the lower limits of the sums. 
It is now appropriate to take the semi-classical limit of (6). Let N be a very large 

positive number, and set 

n = N + v ,  k =  N+K, N $ v , K  (12) 
in (6), which then becomes 

m 

ICly,N+k(f)) = exp[- i (d~,N+~-Nw)fl  2 [Da.N+v(Y,  NSK)ltC) 
v = - N  

+ Dg.N+dy, N +  4 I B  )IIN+v) exp(iw).  (13) 
We now compare (13) with (11). In I and I1 we have shown that the properties 

of both types of system are determined by continued fractions A, p, I and m which are 
defined differently in the quantum and semi-classical cases. From the definitions 
given in I and I1 one may easily show that 

cN+vQ(y, NSK) = cyBo(y, K ) + O  - (14) (it;) 

Da,N+v(Y, N+K) = av(Y,  K)+O (3 - 

(it;) 

where c = A, p ,  I or in, and V, K < N .  Having established this, it easily follows that 

4,N+Ic-Nw = qy,lC+o (15) 

(16) 

(17) Dg,N+~(Y, N+K) = bvb, K)+O - - 
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For example, da,n is defined by (21) of I. Hence d a , N + h . - N ~  satisfies 

whereas from 11, qa,K satisfies 

Using (14), (15) clearly follows if we make the correspondence 

jg12N = I VIZ. (18) 

Equation (1 8) gives the connection between the quantum and classical field ampli- 
tudes, and N may clearly be interpreted as the mean number of photons present in the 
quantum situation. It is appropriate to point out here that in the quantum case one 
can deal with situations in which there may be a statistical distribution for the number of 
photons, whereas in the semi-classical case the field intensity is always precisely defined. 
The correspondence, (18) is therefore only valid if SN < N ,  where SN is the standard 
deviation of the photon distribution. 

We have therefore shown that in the limit, N +  CO, the quantum eigenvalue d 
tends to the corresponding semi-classical eigenvalue q, and the quantum eigenvector 
Id) tends to the corresponding semi-classical eigenvector Iq}. It is apparent that if the 
eigenvectors and eigenvalues of two models are the same, then the properties of the 
two models must be identical. 

We stress that the condition (12) must always be satisfied. If we are asking questions 
about the system which involve processes in which the number of photons present 
changes by a significant fraction of A', then (12) is not satisfied and our analysis is 
inappropriate. However, it is difficult to imagine such a situation arising i n  practice. 

With the provisos already stated, we have therefore shown that the semi-classical 
theory results from the quantized field theory when the mean number of photons is 
allowed to approach infinity. The order of magnitude of the error involved is no 
greater than 1/N. Our conclusions are in accordance with accepted practice and 
contrary to  those of Chang and Stehle. 

Finally we point out, as the other authors here quoted have done, that the semi- 
classical theory leads to predictions of the Bloch-Siegert shift which are in essential 
agreement with theory, in contrast with the theory of Chang and Stehle for two-level 
systems. In fact, it can be shown, using the semi-classical theory (IT), that the Bloch- 
Siegert shift is given by the formula 

This remarkably simple formula is in good. agreement with the experimental results of 
Morand and Theobold (1969) over the entire range of field strengths. 

The research reported was accomplished with the support of the US Office of 
Naval Research, under Contract N00014-69-C-0035. 
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